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The Horndeski Lagrangian
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It is the most general scalar field theory in 4D with second order
equations of motion
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Self-tuning

Recipe for self-tuning Lagrangians, in concept

3
L(¢,¢,a,0) = a® ) Zi(d, $,a) H
i=0
where H is Hubble rate
Zi(¢,¢,0) = Xi(¢,d) — —Yi(¢, 9)

and X; and Y; are functions of the Horndeski or Deffayet free
functions.

© The theory must admit "the vacuum” for any value of the
cosmological constant;

@ This should remain true before and after the phase transition
where the cosmological constant jumps instantaneously by a
finite amount;

© The theory allows for a non-trivial cosmology.

Charmousis et al. 2011



Self-tuning

Recipe for self-tuning Lagrangians, physically

We require that an abrupt change in the matter sector is absorbed
by the scalar field leaving the vacuum unchanged.

@ The field equation must be trivially satisfied at the critical
point to allow the field to self-adjust (Lcp(a, ¢, b) = Lep(a));

@ At the critical point, the Hamiltonian must depend on ng o)
that the continuous field can absorb discontinuities of the
vacuum energy (H X pyac = Hep < f(9));

© The scalar field equation of motion must depend on H, such
that the cosmological evolution is non-trivial before screening
takes place (¢ o H).
Charmousis et al. 2011



Self-tuning

Recipe for self-tuning Lagrangians, in equations

(1] ch<a7 o, qb) = ch(a);

(2] HOvaac:>Hcp0<f(¢)?

3
> iz H #0
i=1
(3 ) qb x H '
ZM;H" #0
at least for one 7.
Charmousis et al. 2011



Self-tuning

The Fab 4

The Fab Four potentials (Charmousis et al.) are indeed able to
self-tune for k = —1

EJohn = ‘G(¢)GHVV#¢VV¢,

Loau = Vo($) PP,V 16V, V 59,

EGeorge = VG(¢)R,

ERingo = VR(¢)G,

@ The cosmological models approach a patch of Minkowski with
k = —1 when it is an attractor, and describe matter
domination before that.

o Vi, Vp ~"stiff fluid”; Vo ~"radiation”; and VR ~ “curvature”.

@ Unclear how to obtain a late time accelerated universe.



Self-tuning

Extending the self tuning to a de Sitter vacuum

@ Complete screening must not necessarily lead to Minkowski;

o If the field self-tunes to a de Sitter vacuum, the late time
accelerated expansion can be naturally described by a
dynamical approach to a stable critical point;

@ A of the critical point is not determined by the pyac of the
matter field but is of purely gravitational origin.



de Sittter Horndeski

Self tuning to a spatially flat de Sitter vacuum

At the critical point, He, = V/A.

The Lagrangian that at the critical point that satisfies all the
constraints, i.e., Lep(a, ¢, ¢) = Lep(a) and Hep o< f(), is

3
£P =" Xi(¢, YA = 3VAI(S) + dhy(0)
1=0

Martin-Moruno, NJN, Lobo (2015)



de Sittter Horndeski

Self tuning to a spatially flat de Sitter vacuum

3

L =" Xi(¢, S)N? = 3VA () + dhg(9)

=0
What are the X;(¢, ¢)?

Q@ X, are terms linear in ¢

X; = 3VAU;(¢) + oWi(9)

@ X, are terms with a non-linear dependence on qb which
contribution has to vanish at the critical point, i.e., L“f{p =0



Linear Models

Linear models



Linear Models

The linear Lagrangian

Considering also matter, the linear Lagrangian and Hamiltonian are

L= LEH + Llinear + Lm H = HEH + /Hlinear + Hm =0

where

Llinear = a3 Z (3\/KUZ(¢) + ¢Wz(¢)) Hl
i
i =0,...,3, subject to the constraint at the critical point,

S Wi(@)A? =D U o(¢)A/2,
i J

8 functions - 1 constraint = 7 free functions = Mag 7!
W; and U; are related to the the x; functions of the Horndeski
Lagrangian and G; functions of the Deffayet et al. functions.



Linear Models

Equations of motion

Together they give respectively the field equation for H' and the
Friedmann equation

S H (VAU o(0) — HWi(9))
> i H'Wi(9)
(1-Q)H?-3Y,(i — 1) H U;(9)
\/K Zi i HHlWi(?Z’)

H = 3




Linear Models

Tripod model: Energy densities

Example for: Uy = e + %eﬂ‘z’ and Wy = Ae?® + eP?,
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Non-linear models



Non-linear models

Non-linear Lagrangian

3
Lo =a*) " Xi(¢,$)H'
i=0
To ensure that any non-linear dependence of the Lagrangian on qﬁ
to vanish at the critical point,

3

1=0

Again, X; are related to the the x; functions of the Horndeski
Lagrangian and G; functions of the Deffayet et al. functions.



Non-linear models

Equations of motion

Proceed to shift-symmetric case and the redefinition ) = ¢

3(1+w)QoPr — Q1P

= Q1P — Q2P
W = 3(1+w)QoP — Q2Fy
Q2P1 — Q1 P

where (o, Q1, Q2, Py, P1, P>, are complex functions of X; and
H, and the average equation of state parameter of matter fluids is

_ Zs Qs(1 + ws)

1
A Zs QS



Non-linear models

With X, X7 and X5

Considering

Xo(¥) =, Xi(¥) = —a)" +
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Non-linear models

4. Extension with Xy, X; and X5

Considering

g
We can obtain a model with wy, = wy + we(1 — a) s.t.
wo = —0.98 and w, = 0.04
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Non-linear models

Slotheonic Galileon

Consider the coupling

1
TR
Shown to have a tracking trajectory = "no matter what the initial

conditions are, the field will asymptotically tend to that trajectory”.
Germani and Martin-Moruno (2017)



Non-linear models

More to do

@ Need study of perturbations.
@ Look for combination of linear and non-linear models?
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